RIPK3 Is Largely Dispensable for RIG-I-Like Receptor- and Type I Interferon-Driven Transcriptional Responses to Influenza A Virus in Murine Fibroblasts

نویسندگان

  • Shoko Nogusa
  • Michael J. Slifker
  • Justin P. Ingram
  • Roshan J. Thapa
  • Siddharth Balachandran
چکیده

The kinase RIPK3 is a key regulator of cell death responses to a growing number of viral and microbial agents. We have found that influenza A virus (IAV)-mediated cell death is largely reliant on RIPK3 and that RIPK3-deficient mice are notably more susceptible to lethal infection by IAV than their wild-type counterparts. Recent studies demonstrate that RIPK3 also participates in regulating gene transcription programs during host pro-inflammatory and innate-immune responses, indicating that this kinase is not solely an inducer of cell death and that RIPK3-driven transcriptional responses may collaborate with cell death in promoting clearance of IAV. Here, we carried out DNA microarray analyses to determine the contribution of RIPK3 to the IAV-elicited host transcriptional response. We report that RIPK3 does not contribute significantly to the RLR-activated transcriptome or to the induction of type I IFN genes, although, interestingly, IFN-β production at a post-transcriptional step was modestly attenuated in IAV-infected ripk3-/- fibroblasts. Overall, RIPK3 regulated the expression of <5% of the IAV-induced transcriptome, and no genes were found to be obligate RIPK3 targets. IFN-β signaling was also found to be largely normal in the absence of RIPK3. Together, these results indicate that RIPK3 is not essential for the host antiviral transcriptional response to IAV in murine fibroblasts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The ubiquitin ligase Riplet is essential for RIG-I-dependent innate immune responses to RNA virus infection.

RNA virus infection is recognized by the RIG-I-like receptors RIG-I and MDA5, which induce antiviral responses including the production of type I interferons (IFNs) and proinflammatory cytokines. RIG-I is regulated by Lys63-linked polyubiquitination, and three E3 ubiquitin ligases, RNF125, TRIM25, and Riplet, are reported to target RIG-I for ubiquitination. To examine the importance of Riplet i...

متن کامل

RIG-I Signaling Is Critical for Efficient Polyfunctional T Cell Responses during Influenza Virus Infection

Retinoic acid inducible gene-I (RIG-I) is an innate RNA sensor that recognizes the influenza A virus (IAV) RNA genome and activates antiviral host responses. Here, we demonstrate that RIG-I signaling plays a crucial role in restricting IAV tropism and regulating host immune responses. Mice deficient in the RIG-I-MAVS pathway show defects in migratory dendritic cell (DC) activation, viral antige...

متن کامل

RIPK3 Activates Parallel Pathways of MLKL-Driven Necroptosis and FADD-Mediated Apoptosis to Protect against Influenza A Virus.

Influenza A virus (IAV) is a lytic virus in primary cultures of many cell types and in vivo. We report that the kinase RIPK3 is essential for IAV-induced lysis of mammalian fibroblasts and lung epithelial cells. Replicating IAV drives assembly of a RIPK3-containing complex that includes the kinase RIPK1, the pseudokinase MLKL, and the adaptor protein FADD, and forms independently of signaling b...

متن کامل

Pyruvate Carboxylase Activates the RIG-I-like Receptor-Mediated Antiviral Immune Response by Targeting the MAVS signalosome

When retinoic acid-inducible gene 1 protein (RIG-I)-like receptors sense viral dsRNA in the cytosol, RIG-I and melanoma differentiation-associated gene 5 (MDA5) are recruited to the mitochondria to interact with mitochondrial antiviral signaling protein (MAVS) and initiate antiviral immune responses. In this study, we demonstrate that the biotin-containing enzyme pyruvate carboxylase (PC) plays...

متن کامل

RIG-I Self-Oligomerization Is Either Dispensable or Very Transient for Signal Transduction

Effective host defence against viruses depends on the rapid triggering of innate immunity through the induction of a type I interferon (IFN) response. To this end, microbe-associated molecular patterns are detected by dedicated receptors. Among them, the RIG-I-like receptors RIG-I and MDA5 activate IFN gene expression upon sensing viral RNA in the cytoplasm. While MDA5 forms long filaments in v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016